Synaptic activity prompts γ-secretase–mediated cleavage of EphA4 and dendritic spine formation

نویسندگان

  • Eiji Inoue
  • Maki Deguchi-Tawarada
  • Aki Togawa
  • Chiyuki Matsui
  • Kohei Arita
  • Sayaka Katahira-Tayama
  • Toshitaka Sato
  • Emiko Yamauchi
  • Yoshiya Oda
  • Yoshimi Takai
چکیده

Alzheimer's disease is an age-dependent neurodegenerative disorder that is characterized by a progressive decline in cognitive function. gamma-secretase dysfunction is evident in many cases of early onset familial Alzheimer's disease. However, the mechanism by which gamma-secretase dysfunction results in memory loss and neurodegeneration is not fully understood. Here, we demonstrate that gamma-secretase is localized at synapses and regulates spine formation. We identify EphA4, one of the Ephrin receptor family members, as a substrate of gamma-secretase, and find that EphA4 processing is enhanced by synaptic activity. Moreover, overexpression of EphA4 intracellular domain increases the number of dendritic spines by activating the Rac signaling pathway. These findings reveal a function for EphA4-mediated intracellular signaling in the morphogenesis of dendritic spines and suggest that the processing of EphA4 by gamma-secretase affects the pathogenesis of Alzheimer's disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell autonomous regulation of hippocampal circuitry via Aph1b-γ-secretase/neuregulin 1 signalling

Neuregulin 1 (NRG1) and the γ-secretase subunit APH1B have been previously implicated as genetic risk factors for schizophrenia and schizophrenia relevant deficits have been observed in rodent models with loss of function mutations in either gene. Here we show that the Aph1b-γ-secretase is selectively involved in Nrg1 intracellular signalling. We found that Aph1b-deficient mice display a decrea...

متن کامل

EphA4 signaling regulates phospholipase Cgamma1 activation, cofilin membrane association, and dendritic spine morphology.

Specialized postsynaptic structures known as dendritic spines are the primary sites of glutamatergic innervation at synapses of the CNS. Previous studies have shown that spines rapidly remodel their actin cytoskeleton to modify their shape and this has been associated with changes in synaptic physiology. However, the receptors and signaling intermediates that restructure the actin network in sp...

متن کامل

The EphA4 receptor regulates neuronal morphology through SPAR-mediated inactivation of Rap GTPases.

Eph receptors play critical roles in the establishment and remodeling of neuronal connections, but the signaling pathways involved are not fully understood. We have identified a novel interaction between the C terminus of the EphA4 receptor and the PDZ domain of the GTPase-activating protein spine-associated RapGAP (SPAR). In neuronal cells, this binding mediates EphA4-dependent inactivation of...

متن کامل

Long-term depression-inducing stimuli promote cleavage of the synaptic adhesion molecule NGL-3 through NMDA receptors, matrix metalloproteinases and presenilin/γ-secretase

Long-term depression (LTD) reduces the functional strength of excitatory synapses through mechanisms that include the removal of AMPA glutamate receptors from the postsynaptic membrane. LTD induction is also known to result in structural changes at excitatory synapses, including the shrinkage of dendritic spines. Synaptic adhesion molecules are thought to contribute to the development, function...

متن کامل

Synaptic autoregulation by metalloproteases and γ-secretase.

The proteolytic machinery comprising metalloproteases and γ-secretase, an intramembrane aspartyl protease involved in Alzheimer's disease, cleaves several substrates in addition to the extensively studied amyloid precursor protein. Some of these substrates, such as N-cadherin, are synaptic proteins involved in synapse remodeling and maintenance. Here we show, in rats and mice, that metalloprote...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 185  شماره 

صفحات  -

تاریخ انتشار 2009